Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors

نویسندگان

  • Rusi
  • S. R. Majid
چکیده

This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg(-1) and 68 kWkg(-1) at current density of 20 Ag(-1) in mixed KOH/K3Fe(CN)6 electrolyte.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors

In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...

متن کامل

Freestanding Gold/Graphene-Oxide/Manganese Oxide Microsupercapacitor Displaying High Areal Energy Density.

Microsupercapacitors are touted as one of the promising "next frontiers" in energy-storage research and applications. Despite their potential, significant challenges still exist in terms of physical properties and electrochemical performance, particularly attaining high energy density, stability, ease of synthesis, and feasibility of large-scale production. We present new freestanding microporo...

متن کامل

Electrodeposition of Polypyrrole and Reduced Graphene Oxide onto Carbon Bundle Fibre as Electrode for Supercapacitor

A nanocomposite comprising of polypyrrole and reduced graphene oxide was electrodeposited onto a carbon bundle fibre (CBF) through a two-step approach (CBF/PPy-rGO-2). The CBF/PPy-rGO-2 had a highly porous structure compared to a nanocomposite of polypyrrole and reduced graphene oxide that was electrodeposited onto a CBF in a one-step approach (CBF/PPy-rGO), as observed through a field emission...

متن کامل

In-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites

Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...

متن کامل

Electrochemical and in situ X-ray spectroscopic studies of MnO2/reduced graphene oxide nanocomposites as a supercapacitor.

Electrochemical and in situ X-ray absorption spectroscopy (XAS) measurements of various MnO2-coated carbon materials (MnO2/acid-functionalized carbon nanotubes (C-CNT), MnO2/reduced graphene oxide (RGO), and MnO2/RGO-Au electrodes) were conducted to evaluate the supercapacitive performances and electronic structures. MnO2 was deposited on the surface of C-CNT, RGO, and RGO-Au via a spontaneous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015